If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x+4x^2=6
We move all terms to the left:
-8x+4x^2-(6)=0
a = 4; b = -8; c = -6;
Δ = b2-4ac
Δ = -82-4·4·(-6)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{10}}{2*4}=\frac{8-4\sqrt{10}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{10}}{2*4}=\frac{8+4\sqrt{10}}{8} $
| 2(x-1)+6=4x, | | -3m-3=9 | | 7x+5=33, | | 85=5(1-2x | | (x-3)(3x+7)-3x.3x.3x=0 | | 37-9÷18-11=d | | 4-2x+8=-26 | | 5+c=-3 | | 4=s/5 | | 10x+1=x | | 8-2w=-10 | | -13=h=7 | | [2x+9|−10=5 | | 8-r=r | | 12-8(k)=36 | | 6(x+4)=-6x+12 | | 0.7(10x+16)=3.8(0.2+5) | | 1.5x-1=1.25x+5 | | 5+2y-3y=4 | | 5x+3+2x=1-4 | | -15+10=-5(x+9) | | -34k+1=45 | | x-(-20)=27 | | 1=u/2-10 | | -4m+3=-m-15 | | 30k160=20k+70 | | 7x+1=-7+8x | | 0=(x+6)/(3x-12)-5/(x-4)-2/3 | | 2y-9y+17=4 | | 1.5x+1=1.25x+5 | | 2m+24=70 | | 8(5x-5)=8(5x-5) |